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ABSTRACT

The fitting of first and second degree equations to experimental data in

order to summarize the main features of the underlying but unknown mechanism,

is a useful and widely used technique. In addition to its interpretive value,

." it often provides information about the mechanism. Certain ways of obtaining

the data are better than others. Criteria for choice of a suitable response

surface design, and specific designs that have excellent characteristics with

respect to those criteria, are described in this expository article. Various

other related features, suggestions for further reading, and a list of basic

references are included. -

This article has been prepared for Volume 6 of the Encyclopedia of the
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RESPONSE SURFACF DESIGNS

Norman R. Draper

Suppose we have a set of observations yul'u,2u, .. ,ku'

u = 1,2,...,n, taken on a response variable y and on k predictor

variables E1, 2,...,ck. A response surface model is a mathematical model

fitted to y as a function of the F's in order to provide a summary

representation of the behaviour of y. Two basic types of models can be

fitted to data arising from a response-predictor relationship:

(a) Empirical models. These are typically models linear in the

*parameters, often polynomials, either in the basic predictor variables or in

transformed entities constructed from these basic predictors. The purpose of

fitting empirical models is to provide a mathematical French curve which will

summarize the data. (The mechanism that produced these data is, in this

context, either unknown or poorly understood.) This article will be concerned

only with design of experiments for such empirical models.

(b) Mechanistic models. When knowledge of the underlying mechanism that

produced the data is available, it is often possible to construct a model

that, reasonably well, represents that mechanism. Such a model is preferable

to an empirical one, because it usually contains fewer parameters, fits the

data better, and extrapolates more sensibly. (Polynomial models often

extrapolate poorly.) However, mechanistic models are often nonlinear in the

parameters, and more difficult to fit and evaluate. Also the choice of an

experimental design presents intricate problems. For basic information on

designs for mechanistic models see the encyclopedia articles "Nonlinear

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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Models" and "Nonlinear Regression" and the references therein. A cornerstone

article on nonlinear experimental design is by Box and Lucas (1959).

We now continue with (a). Typically, when little is known of the nature

of the true underlying relationship, the model fitted will be a polynomial in

the i's. (The philosophy is that we are approximating the true but unknown

surface by low order terms in its Taylor's series expansion. The words

"order" and "degree" are interchangeable in response surface work, and the

choice of one word over the other is a matter of personal preference.) Most

used in practice are polynomials of first order and second order. The first

order model is

Y= '2u + " + 'ku + C (1)U + 6; lU + 62 2 kk

2where it is usually tentatively assumed that the errors C u N(O,a 2) and areu

independent. The second order model contains additional terms

8' E2u +8' + E' 8 2 0* *' ee+ 8 ~ (2)1 lu 22 2u + +'kkku 1'2 luE2u, +k -1,kk-l,uku

Polynomial models of order higher than two are rarely fitted, in practice.

This is partially because of the difficulty of interpreting the form of the

fitted surface which, in any case, produces predictions whose standard errors

. are greater than those from the lower order fit, and partly because the region

of interest is usually chosen small enough for a first or second order model

to be a reasonable choice. Exceptions occur in meteorology where quite high

., order polynomials have been fitted, but there only two or three E's are

commc-ly used. When a second order polynomial is not adequate, and often even

when it is, the possibility of making a simplifying transformation in y orr in one or more of the 's would usually be explored before reluctantly

proceeding to higher order, because more parsimonious representations

involving fewer terms are generally more desirable. In actual applications,

it is common practice to code the &'s via xiu = ( - i Si
xu io i

_. -2-
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i = 1,2,...,k, where i is some selected central value of the i-range to
iA 1

be explored, and Si is a selected scale factor. For example, if a

temperature (T) range of 1400C to 160 0C is to be covered using three levels

1406C, 150 0C, 160 0C, the coding x = (T-150)/10 will code these levels to

x -1, 0, 1 respectively. The second order model would then be recast as

Yiu = + Xlu + + 8 kXku + X l + *.u + x2

+ax x + .9.+8 x + (3)
12 lu 2u k-l,k'k-1,uXku u

and would usually be fitted by least squares in that form. Substitution of

the coding formulas into (3) enables the 8 's to be expressed in terms of

the 8's.

What sorts of surfaces are representable by a model of form (3)? Figure

1 shows, for k = 2, one basic type which occurs frequently in practice. The

three dimensional upper portion of Figure I shows a rising ridge, while the

lower portion shows the contours of that ridge in the (x1 ,X2) plane. The

details of the specific example used are in the figure caption. A change of

origin and a rotation of axes brings the fitted equation into the so-called

canonical form (in X, and X2 ) in which the nature of the surface may be

immediately appreciated. (See Davies, 1978, Chapter 11 for canonical

reduction.) Figure 2 shows three other surface types representable by (3),

the simple maximum, the saddle, and the stationary ridge. For additional

details here, see Box, Hunter and Hunter (1978, pp. 526-534), the source from

which Figures 1 and 2 were adapted.

The n sets of values (Xlu,x2u,...,xku) are the coded experimental

design points, and may be regarded as a pattern of n points in a k-dimen-

sional space. A response surface design is simply an experimental arrangement

of points in x-space which permit the fitting of a response surface to the

corresponding observations yu" We thus speak of first order designs (if a

-3-

i
o
.

"~~~~~~.". ...... . ... .' z."....-" .... .-.-.-.-. ,.,'%'.%'.j-, .u L -



7 -

-m2

-4
"% %

I~a',

* IGURE Example or a second-degree equation representing a rising ridge.

•9 , 82.71 + 8.80x, + 8.19.x3 - 6.9Sx - l07x] - 7.59x~x,

.9- 87.69 - -9.02Xf + 2.97X2

• 0
I
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(a)

(b)

(c)

Figure 2. Examples of surfaces representable by a second-degree

•equation: (a) simple maximm, (b) saddle or col
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first order surface can be fitted), second order designs, and so on.

obviously, a design of a particular order is also necessarily a design of

lower order.

The choice of a response surface design is thus one of selecting a set of

suitable points in k-dimensional x-space according to some pre-selected

criterion or criteria of goodness. The technical literature of experimental

design contains many discussions of so-called "optimal designs". However,

wary skepticism is called for in reading many of these papers, because their

authors usually concentrate on one criterion only (and sometimes one that by

practical experimental standards is inappropriate) and then derive the best

designs under that single criterion. While this often provides interesting

mathematical and/or computational exercises and throws light on the behaviour

of the examined criterion, it does not necessarily lead to sound practical

advice. There are many possible desirable characteristics for a "good"

response surface design. Box and Draper (1975) gave fourteen such

characteristics, any, all or some of which might in different circumstances be

of importance. The design should:

1. generate a satisfactory distribution of information about the

behaviour of the response variable throughout a region of interest, R;

2. ensure that the fitted value at x, y(x), be as close as possible

to the true value at x, n(x);

3. give good detectability of lack of fit;

4. allow transformations to be estimated;

5. allow experiments to be performed in blocks;

6. allow designs of increasing order to be built up sequentially;

7. provide an internal estimate of error;

-6-



8. be insensitive to wild observations and to violation of the usual

normal theory assumptions;

9. require a minimum number of experimental points;

10. provide simple data patterns that allow ready visual appreciation;

*' 11. ensure simplicity of calculation;

12. behave well when errors occur in the settings of the predictor

variables, the x's;

13. not require an impractically large number of predictor variable

levels;

14. provide a check on the 'constancy of variance' assumption.

Part of the art of the good practising statistician is his ability to

assess the special needs of a given situation and to choose a design which

comes close to meeting them. To aid this choice, it would be helpful, where

possible, to have appropriate numerical measures of a design's desirability in

relation to the various criteria. It would also be helpful to know which

criteria are in conflict, and which in harmony. Much work remains to be done

along these lines.

No design satisfies all the criteria simultaneously. However, there are

types of designs which do satisfy many of them. Before discussing any

particular designs we briefly elaborate on some of the features mentioned,

using the same numbering.

1. In order that y(x) should be estimable for all x belonging to R,

the main requirements are

(a) there must be enough design points to estimate all the

coefficients, and preferably additional runs to cover points

3 and 7.

-
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(b) the number of levels of each xi must exceed the order of

the model; otherwise the X'X matrix used in the least squares

procedure will be singular.

6. It is an advantage if the observations used to fit, say, a first

, order model can be combined with some additional observations and re-used to

fit a second order model, especially if a blocking scheme (see point 5) can be

" arranged so that differences in levels between the various blocks of the

* complete design do not affect the final estimates. Such an arrangement allows

very economical use of experimental facilities. A design which can be built

up in this way is called a sequentially blocked response surface design.

* "Randomization of run order would be made only within blocks of the design.

7. The provision of an internal estimate of variance error can be

- achieved by using repeat (replicated) design points. These would often be

-" repeats at the center of the design but, where the allowable number of runs

permits it, non-central points could also be replicated. This latter course

-, might be advisable if (i) it were known that the magnitudes of the errors were

fairly large in relation to the average size of the observations to be used,

*and/or (ii) it was desired to measure the error variance at a number

of x-locations (see 14), and/or (iii) some non-central region were of special

* interest.

A General Philosophy of Sequential Experimentation

*The center of the experimental design is usually the point representing

current "best" (whatever that is defined to mean) conditions, and the

objective in empirically fitting a response surface may be

1. To examine the local nature of the relationship of the response and

the predictors and so "explain" the response's behavior. It may, for example,



be desired to keep the response within specifications requested by a customer,

and/or to see if predictor variable settings are critical and sensitive.

2. To proceed from the current "best" conditions to better conditions

(lower cost, higher yield, improved tear resistance, and so on).

3. To use the fitted surface as a stepping stone to mechanistic

understanding of the underlying process.

A more detailed list of possible objectives is given by Herzberg (1982).

we would usually first consider the possibility that a first order model

might be satisfactory and perform a first order design. A simple but good

choice (see Box, 1952) would be a simplex design with one or more center

points. The general simplex in k dimensions has n = k + I points (runs)

and can be oriented to have its coordinates given as in Table 1, where

ai = (cn/[i(i + I)M 1/2, and c is a scaling constant to be selected.

Alternatively, a two-level factorial or fractional factorial, or a Plackett

and Burman design , with added center point(s) would be excellent. In all

cases, the center point(s) average response can be compared to the average

response at the non-central points to give a measure of non-planarity. For

additional details, see Box, Hunter and Hunter (1978, p. 516).

-9-
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x i  x2  x3  .. xi  • Xk

-a, -a2  -a3  -ai  ... -ak

a1  -a2  -a3  -ai ... -ak

0 2a2  -a3  " -ai ... -ak

0 0 3a3  ... -ai  ... -ak

ia
i

00

0 0 0 0 kak

Table 1. The Rows are the Coordinates of the (k + 1)

Points of a Simplex Design in k Dimensions.

°..

If the first order surface fitted well, one would either interpret its

S, nature if the local relationship were being sought, or else move out along a

K. path of steepest ascent (or descent) if improved conditions were sought; see

Box, Hunter and Hunter (1978, p. 517). If the first order surface were an

inadequate representation of the local data, either initially or after one or

more steepest ascent(s) (or descent(s)), it would be sensible to consider

transformations of the response and/or predictor variables which would allow a

-10-
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first order representation. When the possibilities of using first order

surfaces had been exhausted, one would then consider a second order surface.

It would usually not be necessary at this stage to start from scratch,

particularly if a two-level factorial* or fractional factorial* had just been

used. This previous design could be incorporated as an orthogonal block in a

larger second order composite design. We first explain how such a design is

formed and then how orthogonal blocking may be achieved.

The Central Composite Design

A particular type of second order design which has many of the desirable

features listed is the central composite design (normally called just the

*Q composite design). It is constructed from three sets of points. In the

coded x-space, these three sets can be characterized as follows:

(a) the 2k vertices (*1,*1,...,*1) of a k-dimensional "cube"

(k 4 4), or a fraction of it (k ; 5),

(b) the 2k vertices (*c,O,...,0), (0,*,...,0),...,(0,0,...,O,*)

of a k-dimensional cross-polytope or "star",

(c) a number, n0 , of "center points", (0,0,...,0).

Set (a) is simply a full 2k factorial design or a 2k-p fractional

factorial if k > 5. The notation (±1,±1,...,*1) means that 2k points

obtained by taking all possible combinations of signs are used for full

factorial cases. (In response surface applications, these points are often

referred to as a "cube", whatever the number of factors may be.)

Set (b) consists of pairs of points on the coordinate ixes all at a

r% distance a from the origin. (The quantity a has yet to be specified;

according to its value the points may lie inside or outside the cube.) In

three dimensions the points are the vertices of an octahedron and this word is

? ''-''-''- '- ."".t.'," ". ". -. -. -Z • " " -' -" •" "- " - . .••.................. . . . ..
P. .. . . . . .



sometimes used for other values of k # 3. However, a more convenient name

for such a set of points in k dimensions is "star" or, more formally, cross-

polytope.

These sets and the complete design (the no  center points represented by

a single center point) are shown diagrammatically in Figures 3 and 4 for the

*cases k = 2 and 3.

Fractionation of the cube is possible whenever the resulting design will

permit individual estimation of all the coefficients in Eq. (3). For this,

the fraction must have resolution greater than or equal to five. (See article

on Plackett and Burman designs and references therein for resolution.) The

smallest usable fraction is then a 2k-1 design (a half-fraction) for

- k = 5,6,7, a 2k-2 design (a quarter fraction) for k = 8,9, a 2k-3 for

k 10, and so on. (See Box, Hunter, and Hunter, 1978, p. 408.) Table 2,

-.adapted from Box and Hunter (1957, p. 227) shows the number of parameters in

* .Eq. (3) and the number of non-central design points in the corresponding

composite design for k = 2,...,9. The values to be substituted for p are

p = 0 for k = 2,3, and 4; p = 1 for k = 5,6 and 7; and p = 2 for

k = 8 and 9; they correspond to the fraction, 1/2P, of the cube used for

the design.

No. of variables k 2 3 4 5 6 7 8 9

V No. of parameters (k+1)(k+2)/2 6 10 15 21 28 36 45 55

Cube + star 2 + 2k 8 14 24 - - -

-(Cube) + star 2k1 + 2k - - - 26 44 78 - -
2
-(Cube) + star 2k

- 2 + 2k . . . . . . 80 130
4 .13

a (rotatable) 2 (k
-p)/4 1.414 1.682 2 2 2.378 2.828 2.828 3.364

Suggested n0  2-4 2-4 2-4 0-4 0-4 2-4 2-4 2-4

Table 2. Features of Certain Composite Designs.

I'.
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"Cube" "Star" "Cube" + "Star" + Center(±1,±l1) (-+a,0) points

Figure 3. Composite design for k 2 variables.
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"Star"
Cube (±=,0,0)
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(0,O,_+i) Cube + "Star" + Center points

Figure 4. Composite design for k =3 variables.
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" We can check immediately that the composite designs have at least some of

the 14 desirable features. For example, there are enough points and enough

levels (three if a = 1, five if a # 1) to satisfy points 1 and 13. The

designs can be performed sequentially; the cube or factorial portion plus

center points can be used as a first order design and the additional star

points, plus center points complete the second order design. Thus points 5

and 6 are achieved. (If a block effect changes the response level between the

running of the two sections, it will usually be detected through the center

point readings. The block effect could be estimated as the difference between

the average responses at the center levels in each of the two blocks and the

observations in one or the other block could be appropriately adjusted, if

desired. Alternatively, the design can be orthogonally blocked, that is,

blocked in such a way that block effects are orthogonal to model estimates and

so do not affect them; see below.)

* The no repeated center points allow the internal (pure error)

estimation of error as in point 7. The number of design points is reasonable

in relation to the number of coefficients if not minimal (point 9). The

pattern of the design (point 10) is clearly excellent, and the least squares

calculations are simple (point 11). The designs are also robust to small

. errors in the settings of the x's since a slight displacement of the design

points will not materially affect the fitted surface (point 12). However, a

wild observation may cause an erroneous displacement of the fitted surface

(point 8). This can often be detected from the patterns exhibited by the

standard residuals plots if the effect is serious. The size of a possible

displacement may be reduced if all or some of the noncentral design points are

replicated, since in a set of repeats a single wild observation will be

"muted" by its "correct" replicates. Points 2 and 3 can be satisfied by

-14-
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choice of a, no, and by shrinking or expanding all the design points

relative to the region R (see Box and Draper, 1959, 1963). See, also, Welch

(1983) and Houck and Myers (1978). Point 4 is also satisfied (see Box and

Draper, 1982). Overall then, the composite design is an excellent choice.

What values should be chosen for a and n0? The value of a

determines if the star points fall inside the cube (a < 1), outside the cube

(a > 1), or on the faces of the cube (a = 1). Note that when a = 1 only

three experimental levels (-1,0,1) are required, which may be an advantage

or necessity in some experimental situations. For additional comments and

specific designs see De Baun (1959) and Box and Behnken (1960).

If three levels are not essential, what value of a should be

selected? One criterion that can be applied to decide this is that of

*- rotatability • A design (of any order) is rotatable when the contours of the

variance function V{y(x)} are spheres about the origin in the k-dimensional

factor space defined by variables xl,x 2,...,xk. Box and Hunter (1957) showed

that the required values (given in Table 2) are a = 2 (k-p)/4, where

p = 0, 1 or 2 according to the fraction of the cube used in the design.

Note that the rotatability property is specifically related to the

codings chosen for the x's. It is usually assumed that the experimenter has

chosen these codings in such a manner that she anticipates (roughly speaking)

that one unit of change in any x will have about the same effect on the

response variable. In such a case, obtaining equal information at the same

radial distance in any direction (which is what rotatability implies) is

clearly sensible. Codings are rarely perfect; the experimenter adjusts the

codings in future designs as a result of information gained in current and

past experiments. Exact rotatability is not a primary consideration.

-15-
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.- However, knowledge of the tabulated values provides a target to aim at, while

-. one is attempting to satisfy other desirable design features.

How large a value should be selected for no? There are many possible

criteria to apply; these are summarized by Draper (1982, 1984). The suggested

values in the table are ones that appear to be sensible with respect to many

criteria, the overall message being that only a few center points are usually

needed. (Whenever a is chosen so that all the design points lie on a sphere,

at least one center point is essential, otherwise not all of the coefficients

can be individually estimated.) A few additional center points will do no

harm. Nevertheless, additional runs are probably better used to duplicate

- selected non-central design points, unless special considerations apply, as

below. Repeated points spread over the design provide a check of the usual

"homogeneous variance" assumption; see Box (1959) and Dykstra (1960).

For a numerical example of a second order response surface fitting for

k = 3, see Draper and Smith (1981, pp. 390-403).

Orthogonal Blocking

Another criterion (previously mentioned) that may be applied to the

choice of a and no  in the composite design is that of orthogonal

blocking. This requires division of the runs into two or more blocks in such

a manner that this division does not affect the estimates of the second order

model obtained via the standard least squares regression analysis. The basic

approach was given by Box and Hunter (1957); see, also, DeBaun (1956) and Box

(1959). Two conditions must be satisfied:

1. Each block must itself be a first order orthogonal design. Thus

XiuXju = 0, i j, for each block.

u

-16-
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2. The fraction of the total sum of squares of each variable xi

contributed by every block must be equal to the fraction of the total

observations allotted to the block. Thus, for each block,

2"- iu nb
" b (4)

" n 2 n
Xiu

u= 1

where nb denotes the number of runs in the block under consideration,
U

denotes summation only in that block, and the denominators of (4) refer to the

entire design.

The simplest orthogonal block division of the composite design is into

the orthogonal design pieces:

Block 1. Cube portion (2k
-p points) plus c center points.

Block 2. Star portion (2k points) plus s o center points.

Application of (4) then implies that

a = f 2k-p-1 ( 2 k + so)/( 2 k-P + C )} 1/2 (5)

For example, if k = 3, p = 0, so that the first block is a 23 factorial

plus co  center points and the second block is a six point octahedron plus

so center points, then

a = {4(6 + So)/(8 + cO)} 1/2. (6)

If co = 4 center points are added to the cube and no center points are added

to the star (so = 0), then a = 21/2 = 1.414. This design is orthogonally

blocked but is not rotatable. However, values of a closer to the rotatable

value 1.682 are possible. For example, if c1 = 0, so = 0, a = (24/8) 1/2

1.732; or if co = 4, so = 2, a - (32/12) 1/2 = 1.633. The choices are, of

course, limited by the fact that co  and so must be integers. Generally,

orthogonal blocking (a from (6)) takes precedence over rotatability, for

which a = 2(k-p)/4 is needed. In certain cases, both can be achieved

-17-
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simultaneously. This requires

2k-p + c 0  2 1/2 (k-p)-1(2k + s 0 ) (7)

to be satisfied for integer (k,p,c0 ,s0 ). Some possibilities are

(2,0,so,so), so > 1, (4,0,2s0 ,s0 ), (5,1,(4 + 2so),so) ,  (7,1,4(so 2),s) ,

S > 2, (8,2,4so,so), where so = 0,1,2,..., unless otherwise specified.

(Note that some of these arrangements call for more center points than

recommended in the table, an example of how applications of different criteria

. can produce conflicting conclusions.)

Further division of the star will not lead to an orthogonally blocked

- design. However, it is possible to divide the cube portion into smaller

blocks and still maintain orthogonal blocking if k > 2. As long as the

pieces which result are fractional factorials of resolution III or more (see

Box, Hunter and Hunter, 1978, p. 385), each piece will be an orthogonal

design. All fractional factorial pieces must contain the same number of

center points or else (4) cannot be satisfied. Thus c0  must be divisible by

the number of blocks.

An Attractive Three-Factor Design

In a composite design, replication of either the cube portion or the star

portion, or both can be chosen if desired. As an example of such

possibilities, we now provide, in Table 3, a 24 run second order design for

three factors which is rotatable and orthogonally blocked into four blocks of

equal size. It consists of a cube (fractionated via xlx 2x3 = ± 1) plus

replicated (doubled) star plus four center points, two in each 23-1 block.

This design provides an illustration of the fact that center points in

different blocks of the design are no longer comparable due to possible block

effects. Thus, the sum of squares for pure error must be obtained by pooling

the separate sums of squares for pure error from each block.

*-18-
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xI 2  x3

"-1 -1 1

1 -1 -1 23-1 design,

-1 1 -1 xlx 2 x 3 = 1

Block I 1 1 1 plus two

0 0 0 center points

0 0 0

-1 -1 -1

1 -1 1 23- 1 design,

-1 1 1 xlx 2x3 = -1

Block II 1 1 -1 plus two

0 0 0 center points

0 0 0

S1/2 0 0

2 2 o 0

Block IZI 0 -2 '/2 0 star,

S21/2 0 Og=2 1/2

0 0 -2 '/2

o 0 212

-2 /2 0 0
2 1/2 0 0

Block IV 0 -2/2 0 star,

0 2/2 0 2

0 0 -21/2

0 0 21/2

Table 3. A 24 Run Second Order Rotatable Response Surface Design for Three

Factors, Orthogonally Blocked into Four Blocks of Equal Size.

-19-
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Ceneral Comment

A second order response surface design will be very effective if the

underlying surface being examined is roughly quadratic. If it is an

attenuated or distorted quadratic, transformations on the x-variables will

often be needed. In practice, one usually discovers the need for such

transformations by observing the non-quadratic curvature in the data after a

second order design has been used and finding that the fitted quadratic

*' surface cannot properly handle that curvature.

Qualitative Variables

Our discussion so far has effectively assumed that all the F's are

quantitative variables able to assume any value in some specified range

limited only by the practicalities of the experimental situation. In some

experimentation, some of the predictor variables are qualitative, that is,

able to take only distinct values. Por example, three different catalysts

might constitute three qualitative levels of one factor. So might three

fertilizers, unless they were constructed, for example, by altering the level

of an ingredient; in such a case, the three fertilizers would usually be

regarded as constituting three levels of a continuous variable. Variables

such as shifts, reactors, operators, machines, and railcars would, typically,

be qualitative variables. When qualitative variables occur in a response

surface study, surfaces in the quantitive variables are fitted separately for

each combination of qualitative variables. For illustrative commentary see

Box, Hunter and Hunter (1978, pp. 296-299).

-20-
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Analysis for Orthogonally Blocked Designs

When a second order design is orthogonally blocked:

1. Estimate the 8-coefficients of the second order model in the usual

way, ignoring blocking.

2. Calculate pure error from repeated points within the same block only,

and then combine these contributions in the usual way. Runs in different

blocks cannot be considered as repeats.

3. Place an extra term

m B 2w G

SS(blocks) i n -n

w1 w

4with (m - 1) degrees of freedom in the analysis of variance table, where

Bw is the total of the nw  observations in the w-th block and G is the

grand total of all the observations in all the m blocks.

Further Reading

The literature of response surface methodology is very extensive. For

readers who would like to know more, about response surface methodology, we

encourage the following course of action.

1. Obtain an overview of the field from the excellent review papers of

Mead and Pike (1975) and Morton (1983). (Although the former paper is "from a

biometric viewpoint", it will also serve the non-biometric viewpoint reader

extremely well.) Then look at the earlier review papers of Hill and Hunter

.4 (1966) and Herzberg and Cox (1969) for additional broadening.

2. Read the succession of key papers by Box and Wilson (1951), Box

(1952), Box (1954), Box and Youle (1955), and Box and Hunter (1957). They

contain the basic ideas and philosophy essential to a full understanding of

-21-
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the field. (Although the fundamental ideas of response surface methodology

(RSM) existed before his series of contributions began, George E. P. Box is

justifiably regarded as the founding father of modern RSM. His succession of

* -" publications, written alone and with co-authors, extends over several

decades.)

3. For a definitive textbook account of response surface methodology,

-. see Box and Draper (1985?). Less extensive accounts may also be found in

' other texts, for example, Box, Hunter and Hunter (1978), Davies (1978),

Guttman, Wilks and Hunter (1971) and Myers (1971). For response surface

applications in experiments with mixtures of ingredients, see Cornell (1981).

4. Readers interested in the mathematical and computational problems of

"optimal design" theory with its various alphabetic optimality criteria should

- read the ingenious contributions of J. Kiefer, his co-authors, and others.

-- " For references see, for example, St. John and Draper (1975), Herzberg (1982),

and Kiefer (1984). For a discussion of the problems, see Box (1982),

summarized in Box and Draper (1985?, Chapter 14). See also Lucas (1976) and

Atkinson (1982). For the application of optimality criteria for compromise

purposes, for example, to obtain designs which can be reasonably efficient

both for model testing and parameter estimation, see Atkinson (1975).
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